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Abstract. State-of-the-art 3D object detectors are often trained on
massive labeled datasets. However, annotating 3D bounding boxes re-
mains prohibitively expensive and time-consuming, particularly for Li-
DAR. Instead, recent works demonstrate that self-supervised pre-training
with unlabeled data can improve detection accuracy with limited labels.
Contemporary methods adapt best-practices for self-supervised learn-
ing from the image domain to point clouds (such as contrastive learn-
ing). However, publicly available 3D datasets are considerably smaller
and less diverse than those used for image-based self-supervised learn-
ing, limiting their effectiveness. We do note, however, that such data is
naturally collected in a multi-modal fashion, often paired with images.
Rather than pre-training with only self-supervised objectives, we argue
that it is better to bootstrap point cloud representations using image-
based foundation models trained on internet-scale image data. Specifi-
cally, we propose a shelf -supervised approach (e.g. supervised with off-
the-shelf image foundation models) for generating zero-shot 3D bounding
boxes from paired RGB and LiDAR data. Pre-training 3D detectors with
such pseudo-labels yields significantly better semi-supervised detection
accuracy than prior self-supervised pretext tasks. Importantly, we show
that image-based shelf-supervision is helpful for training LiDAR-only
and multi-modal (RGB + LiDAR) detectors. We demonstrate the effec-
tiveness of our approach on nuScenes, significantly improving over prior
work in limited data settings. Our code is available on Github.

Keywords: Shelf-Supervised 3D Object Detection, Vision-Language Mod-
els, Autonomous Vehicles, Semi-Supervised Learning

1 Introduction

3D object detection is an integral component of the robot perception stack. To
facilitate research in this space, the Autonomous Vehicle (AV) industry has re-
leased several large-scale 3D annotated multi-modal datasets [2,53,59]. However,
LiDAR-based detectors pre-trained on nuScenes [2] cannot be easily applied to
Argoverse [59] due to differences in sensor characteristics across hardware plat-
forms. In practice, training 3D detectors for a new hardware platform requires re-
annotating 3D bounding boxes at scale, which can be prohibitively expensive [56]
and time consuming [6]. Instead, recent works [26, 52, 61, 62] demonstrate that

⋆ Equal Contribution.

https://github.com/meharkhurana03/cm3d


2 M. Khurana and N. Peri

self-supervised pre-training with unlabeled sensor data can improve downstream
detection accuracy with limited labels. Notably, AVs already capture large-scale
unlabeled multi-modal data localized to HD maps during normal testing [58],
motivating the exploration of self-supervised pre-training for outdoor scenes.

Status Quo. Self-supervised learning offers a scalable framework to learn
from massive unlabeled datasets. Typically, self-supervised methods establish a
pretext task that derives supervision directly from the data (e.g. occupancy pre-
diction, contrastive learning, or masked auto-encoding). Once trained, these self-
supervised representations can be adapted for downstream tasks by fine-tuning
on a limited set of annotations. Given the success of image-based self-supervised
learning [13,14,45], recent approaches revisit contrastive learning in the context
of 3D sensor data [52,67]. However, existing 3D datasets are considerably smaller
and less diverse than those used in image-based self-supervised learning. Instead
of solely relying on self-supervised objectives for pre-training, we advocate for a
more practical approach that embraces recent advances in multi-modal founda-
tional models by bootstrapping point cloud representations with vision-language
models (VLMs) trained on internet-scale data. Since off-the-shelf vision-language
models already encode semantics and object priors, our work focuses on distilling
these 2D foundational priors into 3D detectors.

Bootstrapping 3D Representations with 2D Priors. VLMs [23,25,28,
69] are trained on internet-scale data and show impressive zero-shot detection
performance across many application domains [35]. Therefore, we posit that
pre-training with noisy pseudo-labels distilled from vision-language models can
outperform contrastive features learned from scratch. However, distilling image-
based foundational knowledge to LiDAR remains an open challenge [30, 39, 41].
We address this challenge by explicitly “inflating” 2D instance masks to 3D
bounding boxes via unlabelled multi-modal (RGB + LiDAR) training data, using
a careful combination of LiDAR cues, HD maps, and shape priors [58]. This
allows us to produce accurate 3D pseudo-labels which can then be used to pre-
train uni-modal (LiDAR) or multi-modal (RGB + LiDAR) or 3D detectors.
One significant advantage of our shelf-supervision over self-supervision is that
it naturally produces a more aligned pretext task; instead of pre-training 3D
detectors with contrastive learning, we learn from 3D pseudo-labels.

Contributions. We present three major contributions.

1. We propose Cross-Modal 3D Detection Distillation (CM3D), a zero-shot ap-
proach for generating 3D bounding boxes using off-the-shelf vision-language
models.

2. We demonstrate that pre-training detectors with zero-shot 3D bounding box
pseudo-labels achieves higher downstream detection accuracy than prior con-
trastive learning objectives.

3. We conduct extensive experiments to ablate our design choices and demon-
strate that our simple approach achieves state-of-the-art semi-supervised 3D
detection accuracy on the nuScenes benchmark.
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2 Related Works

Unsupervised 3D Object Detection has gained significant interest in recent
years as a way to auto-label large datasets without human annotators. Dewan et
al. [11] introduced a model-free approach to detect and track the visible portions
of objects by leveraging motion cues from LiDAR. More recently, Wong et al. [60]
identified unknown instances through supervised segmentation and clustering
[37]. However, both [11, 60] only reason about the visible extent of objects and
are unable to generate amodal bounding boxes. Cen et. al. [4] used a supervised
detector to generate bounding box proposals for unknown categories, and [54]
exploited the correspondence between images and point clouds to generate object
proposals. Similarly, Wilson et al. [58] employed an HD map and shape priors to
“inflate” 2D detections to 3D cuboids. Utilizing priors such as surface normals
[10,12,51] and motion cues [9,21,32,33] has been shown to improve unsupervised
object detection. You et al. [65] integrated cues from temporal scene changes (e.g.
point ephemerality from multiple traversals) to detect mobile objects [15, 16].
Najibi et al. [38] used scene flow and clustering to generate 3D bounding boxes
for moving objects. However, this method does not assign semantic labels to
cuboids and cannot detect static objects. Similarly, [1, 49] use scene flow to
cluster points and generate pseudo-labels. In contrast, CM3D uses 2D VLM
detectors to localize, “lift”, and classify both static and moving objects.

Self-Supervised Learning for 3D Representations has been applied to
many domains, including object-centric point clouds [43, 46, 47], indoor scenes
[5,17,18,22,24,68], and outdoor environments [52,55,62]. Current techniques for
self-supervised point cloud pre-training can be broadly characterized by their re-
ceptive field. Scene-based contrastive learning [40,61] (often used in the context
of representation learning for indoor scenes) may not capture the necessary fine-
grained details required for recognizing small objects. In contrast, voxel-based
contrastive learning (often used in the context of representation learning for
outdoor scenes) inherently struggles with a restricted receptive field, limiting its
ability to encode larger structures. Region-based representations [44,62] attempt
to strike a balance between coarse-grained scene representations and fine-grained
voxel representations. However, most regions in outdoor scenes (e.g. ground plane
and buildings) lack informative cues, making it difficult to learn robust features.
More recently, multi-modal contrastive learning methods [26, 52] demonstrate
that paired multi-modal sensors can provide complementary (self-)supervision
for pre-training. PointContrast [61] established correspondences between differ-
ent views of point clouds using a contrastive loss. DepthContrast [67] treated
different depth maps as instances and discriminates between them. STRL [19]
extracted invariant representations from temporally correlated frames in a 3D
point cloud sequence. More recently, SimIPU [26] and CALICO [52] delve into
multi-modal contrastive learning by utilizing paired RGB and LiDAR data. Geo-
MAE [55] frames point-cloud representation learning as a masked auto-encoding
task, and uses geometric pretext tasks including occupancy, normals, and cur-
vature estimation. In contrast to prior work, we argue that directly pre-training
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with noisy pseudo-labels from vision foundation models can be a more effective
pre-training strategy for 3D object detection.

Leveraging 2D Foundational Models for 3D Perception is an active
area of research. Sautier et al. [48] introduced SLidR, a 2D-to-3D representa-
tion distillation method aimed at cross-modal self-supervised learning on large-
scale point clouds. Mahmoud et. al. [36] subsequently extended SLidR with a
semantically-aware contrastive constraint and a class-balancing loss. SEAL [29]
takes inspiration from SLidR and used SAM [20] to generate 3D class-agnostic
point cloud segments for contrastive learning. More recently, SA3D [3] extends
SAM [20] to segment 3D objects with NeRFs. Anything-3D [50] combines BLIP
[23], a pre-trained 2D text-to-image diffusion model, with SAM for single-view
conditioned 3D reconstruction. 3D-Box-Segment-Anything utilizes SAM with a
pre-trained 3D detector, VoxelNeXt [7], for interactive 3D detection and label-
ing. SAM3D [66] repurposes SAM to directly segment objects from BEV point
clouds. Most recently, UP-VL [39] distilled 2D vision-language features [45] into
LiDAR point clouds to generate amodal cuboids. We use foundational models
to generate class-specific instance segmentation masks and “inflate” these masks
to 3D cuboids using LiDAR cues, HD maps, and shape priors.

3 Cross-Modal 3D Detection Distillation (CM3D)

Given a large unlabelled set of multi-modal (RGB + LiDAR) data, we com-
bine 2D VLMs with 3D domain knowledge (given by 3D shape priors and map
constraints) to generate 3D bounding box pseudo-labels for pre-training 3D de-
tectors. We describe pseudo-label generation in Sec. 3.1 and our training pipeline
in Sec. 3.3.

3.1 Generating 3D Bounding Box Pseudo-Labels

2D Mask Generation. The first stage of our pipeline requires producing accu-
rate 2D instance masks for a fixed vocabulary of object categories. We prompt
a VLM detector (e.g. Detic [69] or GroundingDINO [28]) with class names (e.g.
car, bus, truck) to generate 2D box proposals. Though some VLM detectors
(i.e., Detic) already produce instance segmentation masks, we found it more
effective to prompt separate (foundational) models such as SAM [20] with the
predicted 2D bounding boxes to generate high-quality segmentation masks.

3D Projection. Next, we project the LiDAR points onto the 2D image plane
and group all points within each instance mask. To produce a final 3D bounding
box pseudo-label, we need to generate a 3D centroid, 3D orientation, and cuboid
dimensions (width, length, height). Our key technical approach, described below
and inspired by [58], is to leverage 3D priors in the form of maps (e.g. car
cuboids should typically be aligned with map geometry) and shape priors (e.g.
fine-grained categories such as trucks tend to have canonical dimensions).

3D Cuboid Generation. We define an initial candidate 3D centroid to be
the medoid of points within each mask, expressed as m = argminx∈PM

∑
p∈PM

||p− x||2,
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Fig. 1: CM3D Pseudo-Label Pipeline. First, we prompt a vision-language detector
(e.g. Detic [69]) with a class name (e.g. car) to generate 2D box proposals. Next,
we prompt SAM [20] with the predicted 2D bounding boxes to generate high-quality
instance segmentation masks. We then generate an oriented 3D cuboid using the set
of LiDAR points that project to a given 2D instance mask. Specifically, we define the
center of the cuboid to be the medoid of the LiDAR points, the dimensions (length,
width, height) to be a fixed shape prior (similar to an anchor box) as reported by
ChatGPT when prompted with the class name, and the orientation to be aligned with
lane geometry provided from an HD map.

where PM is the set of LiDAR points that lie within the mask M . Note that
this medoid tends to lie on the surface of the object visible to the LiDAR sensor
rather than the true object centroid, which implies it will require refinement.
To estimate a canonical width-height-length, we simply prompt an LLM (Chat-
GPT) with each class name and use the returned value for all instances. Although
LLMs do not have access to our 3D training data, they have seen many descrip-
tions of object shapes on the web and can provide reasonable prototypical 3D
sizes of common objects. Lastly, we estimate box orientation for vehicles using
lane geometry from an HD map and assign the direction of the nearest lane to
each cuboid. We assign an orientation of zero degrees to all non-vehicles (e.g.
pedestrians, barriers and traffic cones).

3D Refinement. Fig. 1 visualizes our overall pseudo-label generation pipeline.
Because many components of our pipeline provide only rough 3D estimates (e.g.,
not all trucks have precisely the same 3D dimension), we find that 3D labels can
be refined via self-training, which is discussed in the next section. We several
strategies for improvement, including prompt engineering to improve VLM zero-
shot 2D detections, LiDAR accumulation to improve medoid estimation, mask
erosion to remove noisy LiDAR points near mask boundaries, medoid compen-
sation to reduce object center estimation biases, and late-fusion of independent
zero-shot 3D detectors to improve orientation and shape estimation. We find
that imperfect pseudo-labels still provide an effective signal for pre-training.
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3.2 CM3D Pseudo-Label Refinement

Many components in our CM3D pipeline rely on data-driven priors and can only
provide rough 3D estimates. We describe several strategies for improving our 3D
psuedo-labels below.

Prompt Engineering. Although VLMs show impressive zero-shot perfor-
mance, they struggle when the prompted class is different from concepts en-
countered in their training data [35]. Following prior work [45], we prompt De-
tic with the standard nuScenes class names and their synonyms (e.g. {human,
adult, person, pedestrian} for class pedestrian, and {car, sedan, SUV}
for class car). Specifically, we use the nuScenes annotator guide to understand
how nuScenes defines each class and generate synonyms accordingly. As shown
in Fig. 1, Detic predicts class names and 2D bounding boxes for each image,
along with confidence scores for each detection. We then perform non-maximum
suppression (NMS) to remove redundant predictions across synonyms. Interest-
ingly, Detic is unable to accurately detect classes like barrier even with carefully
designed prompts, suggesting that prompting with synonyms is insufficient for
certain ambiguously defined classes [35].

Mask Erosion. Although instance segmentations from SAM [20] are often
accurate, we find that background LiDAR points near object boundaries can
significantly impact medoid estimation [64]. We employ mask erosion to remove
noisy LiDAR points near mask boundaries. These points are often unreliable
because of depth discontinuities and minor errors in sensor calibration.

LiDAR Accumulation. LiDAR sweeps are notoriously sparse at range,
making it difficult to distinguish foreground-vs-background. Therefore, the com-
munity has adopted the practice of accumulating multiple ego-motion compen-
sated LiDAR sweeps when training 3D detectors [2]. We adopt the same practice
in our pseudo-label generation pipeline for two reasons. First, accumulating mul-
tiple sweeps makes our medoid estimate more robust to outliers. Second, it biases
the medoid towards the surface of the object, making medoid compensation (dis-
cussed next) more reliable.

Medoid Compensation. We find that predicted medoids are radially biased
toward the ego vehicle because LiDAR points are denser on visible surfaces of
objects as perceived from the ego vehicle. To compensate for this bias, we “push”
all predictions radially away from the ego vehicle by a distance proportional to
the object’s size as follows:

Let C be the medoid of the object in the global coordinate frame, E be
the center of the ego vehicle with respect to the global coordinate frame, and
θ be the heading of the object in the global coordinate frame. We define a
vector CE = E − C, and α as the global slope angle of this vector, i.e., α =

arctan
(

CEy

CEx

)
. As shown in Figure 2, we “push” the medoid back by distance

d = min
(∣∣∣ w

2 sin(α−θ)

∣∣∣ , ∣∣∣ l
2 cos(α−θ)

∣∣∣). Therefore, our new medoid is C ′
x = Cx − d ·

cos(α) and C ′
y = Cy − d · sin(α). We find that this simple geometric trick works

surprisingly well in practice.

https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/instructions_nuscenes.md
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Fig. 2: Medoid Compensation. We find that all predicted medoids (shown in blue)
tend to be radially biased toward the ego vehicle. This is because the LiDAR pointcloud
only captures the visible surface of the car and not its full shape. To compensate for this
bias, we “push” all predictions radially away, i.e., along the line connecting the center of
the ego vehicle and the object medoid by a distance proportional to the object’s size.
The corrected medoid is shown in yellow. Empirically, we show that this geometric
trick improves mAP by 1.6% and NDS by 2.1%, respectively.

Non-Maximum Suppression. nuScenes uses six RGB cameras to capture
a 360◦ view of the environment, where neighboring cameras capture overlapping
regions. Naively generating pseudo-labels across cameras can produce repeated
detections for the same instance. Therefore, we perform non-maximum suppres-
sion (NMS) in the overlapping regions [57] after medoid compensation to remove
duplicate detections.

Late Fusion. Recall, we define the center of each predicted cuboid to be the
medoid of the LiDAR points within an instance mask, the dimensions (length,
width, height) as reported by ChatGPT when prompted with the class name,
and the orientation to be aligned with lane geometry provided by an HD map.
Therefore, the quality of our pseudo-label generation pipeline is entirely depen-
dent on the accuracy of our shape and orientation priors. In contrast, SAM3D [66]
does not use priors for shape and orientation estimation, but rather directly esti-
mates a rotated cuboid from a BEV perspective point cloud. Although SAM3D
does not predict semantics, we find that its rotation and shape estimates are
often more accurate than our priors. Therefore, we propose a simple late-fusion
strategy to combine the best attributes of both zero-shot predictions.

For a given timestep, we greedily match our zero-shot predictions with SAM3D’s
predictions using 2D BEV IoU. Spatially matching CM3D and SAM3D predic-
tions yields three categories of detections: matched detections, unmatched CM3D
detections (without corresponding SAM3D detections), and unmatched SAM3D
detections (without corresponding CM3D detections). We discard unmatched
SAM3D detections since these are likely false positives because distinguishing
foreground-vs-background with LiDAR-only cues is difficult [42].
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Fusion of matched predictions from two independent detectors requires their
scores to be comparable, Therefore, we use a class-agnostic implementation of
score calibration as defined in [34]. Specifically, we scale the logits for SAM3D
using a scaling factor τ (obtained by grid search on a val-set), i.e., confidence
value c = σ(logit/τ). We construct a new set of fused detections by selecting
the size and orientation from the more confident detection (SAM3D vs. CM3D)
after calibration and use the semantic class predicted by CM3D (since CM3D
can more accurately predict semantics with RGB images). Finally, we add all
unmatched CM3D predictions to the set of fused predictions, unchanged.

3.3 Training with Pseudo-Labels

We use our generated pseudo-labels to pre-train 3D detectors that will be fine-
tuned on a limited set of labeled data. We present a block diagram of our training
pipeline in Fig 4. Notably, it is trivial to train any 3D detector with our pseudo-
labels, making our proposed framework widely applicable. Further, although our
pseudo-label generator requires paired RGB and LiDAR data for pseudo-label
generation, we can easily train a LiDAR-only model like CenterPoint, which
requires only LiDAR sweeps at inference.

In this paper, we evaluate CM3D by training two popular detectors, Cen-
terPoint [63] and BEVFusion [31]. Following CALICO’s [52] experiment setup,
we train BEVFusion with the CenterHead and turn off class-balanced grouping
and sampling. Although copy-paste augmentation is widely used when training
3D detectors, we find that performance degrades with our noisy pseudo-labels.
We train the CenterHead following standard 3D detection losses. We use the
sigmoid focal loss (for recognition) [27] and L1 regression loss (for localiza-
tion). Concretely, our loss function is as follows: L = LHM + λLREG, where
LHM =

∑C
i=0 SigmoidFocalLoss(Xi, Yi) and LREG = |XBOX − YBOX |, where

Xi and Yi are the ith class’ predicted and ground-truth heat maps, while XBOX

and YBOX are the predicted and pseudo-label box attributes.
Self Training. Although directly pre-training with our pseudo-labels sig-

nificantly improves mAP, it also yields lower NDS compared to prior work. We
posit that this is due to the errors in size and orientation estimation, which
can both be attributed to our simplistic 3D priors. Prior work suggests that
self-training can be effective for semi-supervised learning [39,65]; not only can it
discover more objects [39,65], but it may also refine noisy box labels. We find that
self-training significantly improves orientation and shape estimates by exploiting
the regularity of multi-modal data; similar-looking objects will generate similar
pseudo-labels due to the smoothness of the learned detection function. As shown
in Fig 3, given K% annotated training data and (1-K%) unlabeled training data
with CM3D pseudo-labels, we first pre-train a randomly initialized detector on
(1-K%) pseudo-labels, fine-tune on K% annotated data, and use the resulting
fine-tuned model to re-label the (1-K%) unlabeled training data. We iterative
refine the (1-K%) pseudo-labels through multiple rounds of self-training. Impor-
tantly, we randomly initialize the detector after each round of self-training and
pseudo-label generation to simplify training. We find that even one round of
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Fig. 3: Self-Training Procedure. We train a detector with ground truth annotations
from K% of the train-set an pseudo-labels from (1-K%) of the train-set. We iteratively
use the trained detector to predict better pseudo-labels on the (1-K%) subset until the
accuracy of the predicted detections plateaus. We visualize one round of self-training
above.

self-training significantly improves NDS when fine-tuning detectors with limited
annotations. Additional rounds of self-training provide limited improvements.

4 Experiments

In this section, we conduct extensive experiments to evaluate our proposed ap-
proach on nuScenes [2]. We follow the suggested protocol in [52, 55, 62] and
sample K% of the training data uniformly from the entire training set. We find
that CM3D significantly improves over prior works in limited data settings (cf.
Table 2).

Implementation Details. When generating pseudo-labels with CM3D, we
use all Detic predictions with a confidence greater than 10% and use an IoU
threshold of 0.75 for 2D NMS. We use a 3 × 3 kernel for mask erosion and
accumulate the past 3 LiDAR frames for densification. Note that this is differ-
ent from the usual 10-frame accumulation in nuScenes since 10-frame LiDAR
pointcloud accumulation creates long “tails” for moving objects, and leads to in-
accurate medoid predictions. For 3D NMS, we use class-specific distance-based
thresholds defined in [63].

When training all detectors with pseudo-labels, we employ standard aug-
mentation techniques (except for copy-paste augmentation). Following estab-
lished practices, we aggregate the past 10 sweeps for LiDAR densification using
the provided ego-vehicle poses. We train CenterPoint and BEVFusion using the
same hyperparameters prescribed by their respective papers. For CenterPoint,
we first train the detector for 20 epochs with CM3D pseudo-labels and fine-tune
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Fig. 4: Pre-Training and Fine-Tuning Pipeline (a) First, we generate zero-shot
3D bounding boxes with CM3D as described in Fig. 1. (b) Next, we pre-train our 3D
detector using the generated pseudo-labels. Notably, this process is no different from
training 3D detectors on ground-truth labels. (c) Lastly, we fine-tune the detector using
a small amount of labeled data.

the detector for 20 epochs using the limited set of annotations. For BEVFu-
sion, we first pre-train the LiDAR-only branch using CM3D pseudo-labels for
20 epochs and fine-tune the LiDAR-only branch for 20 epochs using the limited
set of annotations. We train the fusion model (RGB + LiDAR) for 6 epochs
using the limited amount of labeled training data. Lastly, we fine-tune all mod-
els using self-training. Specifically, we use the fine-tuned model to generate new
pseudo-labels on the unlabeled portion of the train-set and retrain the detec-
tor on the entire train-set (including the limited set of ground truth labels and
pseudo-labels) from scratch. We conduct all experiments on 8 RTX 3090 GPUs.
Our code is available on Github.

4.1 Ablation Study of 3D Pseudo-Label Refinement.

We ablate our pseudo-label generation algorithm to determine how each compo-
nent improves the baseline in Table 1. We find that medoid compensation has
the greatest impact on pseudo-label quality, improving mAP by 1.6% and NDS
by 2.1%. Tuning the Detic text prompts by including synonyms also improves
results significantly. Finally, the 3D distance-based NMS helps remove duplicates
present in the overlapping regions of the ring cameras and increases the mAP
by 1%.

4.2 Comparison to State-of-the-Art

We first evaluate the zero-shot performance of CM3D to highlight the quality
of our pseudo-labels. Next, we evaluate the performance of detectors trained
on pseudo-labels. Lastly, we evaluate the performance of detectors pre-trained
on CM3D psuedo-labels and fine-tuned on labeled data. Note that models are

https://github.com/meharkhurana03/cm3d
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Table 1: Ablation on Pseudo-Label Generation. We analyze the impact of each
component over the baseline (cf. Fig 1). Importantly, we find that prompt engineering,
medoid compensation, and non-maximum suppression have the greatest impact.

Method mAP ↑ NDS ↑
Baseline 18.6 17.8

+ Prompt Engineering 19.7 (+1.1) 18.4 (+0.6)
+ LiDAR Accumulation 20.0 (+0.3) 18.6 (+0.2)
+ Mask Erosion 20.2 (+0.2) 19.1 (+0.5)
+ Medoid Compensation 21.8 (+1.6) 21.3 (+2.1)
+ Non-Maximal Suppression 22.8 (+1.0) 21.9 (+0.6)
+ Late Fusion 23.0 (+0.2) 22.1 (+0.2)

pre-trained with pseudo-labels from (1 - K%) of the training set and fine-tuned
with ground truth labels from K% of the training set. We copy the results of
prior work from CALICO and refer readers to [52] for further details. We present
salient conclusions from Table 2 below.

Evaluating Zero-Shot Performance. We evaluate the quality of CM3D’s
pseudo-labels (0% Training Data) and find that our method achieves 22.3%
mAP and 22.1% NDS. We compare CM3D with SAM3D [66], a recently re-
leased zero-shot 3D detector. Notably, both CM3D and SAM3D use SAM [20]
to group LIDAR points. However, CM3D groups LiDAR points on the image
plane and SAM3D [66] groups LiDAR points in the 2D BEV plane. Our multi-
modal zero-shot 3D detector significantly outperforms SAM3D’s LiDAR-only ap-
proach by 20.7%. Importantly, SAM3D was initially designed as a class-agnostic
zero-shot detector. We posit that SAM3D’s poor performance can be attributed
to nuScenes’ diverse classes. Unlike many prior methods that generate class-
agnostic pseudo-labels [1, 49], our approach is able to generate multi-class pre-
dictions because we leverage images during training.

Distilling Multi-Modal Priors into Uni-Modal Models. Although CM3D
requires paired RGB images and LiDAR sweeps for pseudo-label generation, we
can easily train RGB-only or LiDAR-only student models (e.g. CenterPoint +
CM3D). Importantly, these student models don’t require paired RGB-LiDAR
data at inference (and are therefore compared against other models that only
use LiDAR at inference). However, we find that the CenterPoint + CM3D (0%
Training Data) student model performs worse than the pseudo-label generator
(CM3D). This can be attributed to learning with noisy labels and not hav-
ing access to the same sensor data as the teacher. However, we find that using
multi-modal cues for both training and testing yields higher results. Specifically,
BEVFusion + CM3D (0% Training Data) achieves 3.9 mAP and 1.9 NDS better
performance than CenterPoint + CM3D (0% Training Data).

Significant Improvements in Low-Data Setting. Pre-training Center-
Point with CM3D pseudo-labels and fine-tuning on labeled data improves over
the prior art of PRC [52] by 8.1 mAP and 2.8 NDS with 5% labeled data. Sim-
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Table 2: Semi-Supervised 3D Detection on NuScenes. In terms of zero-shot
accuracy, pseudo-labels from CM3D outperforms prior art (SAM3D) by 20.7% NDS.
With 5% supervised training data, pre-training CenterPoint with CM3D pseudo-labels
improves over the prior art of PRC [52] by 8.1 mAP / 2.8 NDS. When comparing to
Camera-LiDAR methods, pre-training BEVFusion with CM3D pseudo-labels outper-
forms prior art (CALICO) by 8.6 mAP / 4.6 NDS. We highlight the best LiDAR-only
(L) results in blue, and the best Camera-LiDAR (L+C) results in red.

Training Data Method Modality mAP ↑ NDS ↑
Train Test

SAM3D [66] L L 1.7 2.4
0% CM3D (Ours) L + C L + C 23.0 22.1

(Unsupervised) CenterPoint [63] + CM3D (Ours) L + C L 16.7 21.4
BEVFusion [31] + CM3D (Ours) L + C L + C 20.6 23.3

CenterPoint [63] + Rand. Init. L L 33.1 37.4
PointContrast [61] L L 36.7 43.0
ProposalContrast [62] L L 37.0 43.1
PRC [52] L L 38.2 46.0

5% CenterPoint [63] + CM3D (Ours) L + C L 46.3 48.8
BEVFusion [31] + Rand. Init. L + C L + C 39.0 43.7
SimIPU [26] L + C L + C 39.1 45.8
PRC [52] + BEVDistill [8] L + C L + C 41.0 47.5
CALICO [52] L + C L + C 41.7 47.9
BEVFusion [31] + CM3D (Ours) L + C L + C 51.3 52.5

CenterPoint [63] + Rand. Init. L L 41.1 48.0
PointContrast [61] L L 42.3 51.2
ProposalContrast [62] L L 42.1 51.1
PRC [52] L L 44.1 53.1

10% CenterPoint [63] + CM3D (Ours) L + C L 51.0 56.3
BEVFusion [31] + Rand. Init. L + C L + C 46.2 51.9
SimIPU [26] L + C L + C 47.5 52.4
PRC [52] + BEVDistill [8] L + C L + C 49.7 53.6
CALICO [52] L + C L + C 50.0 53.9
BEVFusion [31] + CM3D (Ours) L + C L + C 53.3 56.5

CenterPoint [63]+ Rand. Init. L L 47.1 56.7
PointContrast [61] L L 48.3 57.5
ProposalContrast [62] L L 48.0 57.4
PRC [52] L L 49.5 58.9

20% CenterPoint [63] + CM3D (Ours) L + C L 54.5 59.0
BEVFusion [31] + Rand. Init. L + C L + C 53.1 58.9
SimIPU [26] L + C L + C 53.4 58.9
PRC [52] + BEVDistill [8] L + C L + C 54.4 59.2
CALICO [52] L + C L + C 54.8 59.5
BEVFusion [31] + CM3D (Ours) L + C L + C 56.2 60.2

CenterPoint [63] (Rand. Init.) L L 53.2 61.0
PointContrast [61] L L 53.5 61.4
ProposalContrast [62] L L 53.1 61.0
PRC [52] L L 54.1 62.1

50% CenterPoint [63] + CM3D (Ours) L + C L 56.9 61.0
BEVFusion [31] (Rand. Init.) L + C L + C 58.5 61.8
SimIPU [26] L + C L + C 58.6 62.0
PRC [52] + BEVDistill [8] L + C L + C 59.6 62.3
CALICO [52] L + C L + C 60.1 62.7
BEVFusion [31] + CM3D (Ours) L + C L + C 59.7 62.5
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Fig. 5: Qualitative Results of Pseudo-Labels. We visualize pseudo-labels (pink)
and ground-truth labels (green) across all 10 object classes on the nuScenes val-set.
In (a), our pseudo-labels accurately estimate location, cuboid size, and orientation,
demonstrating the general effectiveness of medoid compensation and map-based orien-
tation estimation. In (b), we find that CM3D often misses heavily-occluded objects.
This is unsurprising because our method relies on accurate RGB-based detections,
which often fail with heavy occlusions. In (c), our map-based orientation estimation
fails when the predicted object is not oriented in the direction of any lane. For example,
the incorrect orientation of the car turning into the intersection (not aligned to any
nearby lanes) illustrates the limitations of our approach. In both (d) and (f), we are
unable to label several barriers. We attribute these missed detections to the ambiguity
of the class name barrier. Notably, a barrier in nuScenes may not be the same as
barrier as defined in internet pre-training data [35]. In (d), (e), and (f), we produce
duplicate boxes for the same instances, indicating a failure of NMS.

ilarly, pre-training BEVFusion with CM3D pseudo-labels outperforms prior art
(CALICO) by 8.6 mAP and 4.6 NDS. This suggests that aligning your pre-
training and fine-tuning tasks can yield better performance.

Qualitative Results. We visualize the output of our pseudo-label genera-
tion approach in Fig. 5. Although our method generates reasonable predictions
in many cases, we find that our method fails in cases of occlusions (where there
is no 3D information) and in cases where the VLM predicts a false positive
detection with high confidence. See Fig 5 for detailed analysis.

5 Conclusion

In this paper, we propose Cross-Modal 3D Detection Distillation (CM3D), a zero-
shot approach for generating 3D bounding boxes using vision-language models.
We demonstrate that pre-training detectors with zero-shot 3D bounding box
pseudo-labels achieves higher downstream semi-supervised detection than prior
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Table 3: nuScenes BEV Map Segmentation Results. Although BEVFusion +
CM3D is pre-trained on noisy 3D bounding boxes, it performs better on BEV map
segmentation than random initialization! However, our method performs worse than
other state-of-the-art methods. This suggests that aligning pre-training and fine-tuning
tasks improves semi-supervised performance for the target task (cf. Table 2) at the cost
of generalizing to other downstream tasks.

Training Data Method mIOU ↑
BEVFusion [31] + Rand. Init. 36.3
SimIPU [26] 38.5

5% PRC [52] + BEVDistill [8] 40.9
CALICO [52] 42.0
BEVFusion [31] + CM3D (Ours) 38.5
BEVFusion [31] + Rand. Init. 43.8
SimIPU [26] 45.1

10% PRC [52] + BEVDistill [8] 46.4
CALICO [52] 47.3
BEVFusion [31] + CM3D (Ours) 44.4

contrastive learning objectives. However, we find that our proposed pre-training
strategy limits generalization to arbitrary downstream tasks.

Aligning Pre-Training and Fine-Tuning Task Limits Generalizabil-
ity. Contrastive learning has been widely adopted for self-supervised learning
because it encodes task-agnostic representations that can be used for diverse
downstream applications. In contrast, our approach uses prior knowledge about
the downstream task to design a suitable pretext task. While this works well
when the pre-training and fine-tuning tasks are well aligned, it does not provide
a significant improvement when this is not the case. We evaluate the general-
ization of BEVFusion pre-trained on CM3D pseudo-labels for BEV map seg-
mentation. Surprisingly, our pre-training strategy performs better at BEV map
segmentation than random initialization! However, our method performs slightly
worse than other state-of-the-art self-supervised methods methods. This suggests
that aligning our pre-training and fine-tuning task can provide significant im-
provements (cf. Table 2) at the cost of generalizability to diverse tasks. Future
work should explore different shelf-supervised pretext tasks to improve semi-
supervised accuracy for diverse tasks in low data settings.
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